## Weak Keys of the Full MISTY1 Block Cipher for Related-Key Cryptanalysis

#### Jiqiang Lu

Institute for Infocomm Research, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632 jlu@i2r.a-star.edu.sg, lvjiqiang@hotmail.com

Joint work with Wun-She Yap and Yongzhuang Wei.

28 March 2012

Outline:

- Block Cipher Cryptanalysis
- 2 The MISTY1 Block Cipher
- 3 2103.57 Weak Keys for a Related-Key Differential Attack
- 9 292 Weak Keys for a Related-Key Amplified Boomerang Attack
- Onclusions

イロト イポト イヨト イヨト

#### 1. Block Cipher Cryptanalysis

2. The MISTY1 Block Cipher 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack 4. 2<sup>92</sup> Weak Keys for a Related-Key Amplified Boomerang Attack 5. Conclusions

### 1.1 Block Cipher

#### 1.1 Block Cipher

- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

- An important primitive in symmetric-key cryptography.
  - \* Main purpose: provide confidentiality A most fundamental security goal.
- An algorithm that transforms a fixed-length data block into another data block of the same length under a secret user key.
  - \* Input: plaintext.
  - \* Output: ciphertext.
  - \* Three sub-algorithms: encryption, decryption, key schedule.
- Constructed by repeating a simple function many times, known as the iterated method.
  - \* An iteration: a round.
  - \* The repeated function: the round function.
  - \* The key used in a round: a round subkey.
  - \* The number of iterations: the number of rounds.
  - \* The round subkeys are generated from the user key under a key schedule algorithm.

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

## 1.2 A Cryptanalytic Attack

- An algorithm that distinguishes a cryptosystem from a random function.
- Usually measured using the following three metrics:
  - \* Data complexity
    - The numbers of plaintexts and/or ciphertexts required.
  - \* Memory (storage) complexity
    - The amount of memory required.
  - \* Time (computational) complexity
    - The amount of computation or time required, how many encryptions/decryptions or memory accesses.
- Goals:
  - \* Break a cryptosystem (ideally, in a practical complexity).
  - \* Enable more secure cryptosystems to be designed.

#### 1. Block Cipher Cryptanalysis

2. The MISTY1 Block Cipher 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack 4. 2<sup>92</sup> Weak Keys for a Related-Key Amplified Boomerang Attack 5. Conclusions

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

### 1.3 Four Cryptanalysis Scenarios

#### Ciphertext-only attack scenario

- \* Have access to a number of ciphertexts.
- Known-plaintext attack scenario
  - \* Have access to a number of ciphertexts and the corresponding plaintexts.

#### • Chosen-plaintext/cipertext attack scenario

\* Can choose a number of plaintexts (or ciphertexts), and be given the corresponding ciphertexts (or plaintexts).

#### Adaptive chosen plaintext and ciphertext attack scenario

\* Can choose plaintexts (or ciphertexts) and be given the corresponding ciphertexts (or plaintexts). Based on the information obtained, the attacker can then choose further plaintexts/ciphertexts, and be given the corresponding ciphertexts/plaintexts ...

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

## 1.4 Three Elementary Cryptanalysis Techniques

Assume an *n*-bit block cipher with a *k*-bit user key  $E_{\mathcal{K}}(\cdot)$ .

#### • A dictionary attack

- \* Build a table of all possible ciphertexts corresponding to one particular plaintext, with one entry for each possible key:  $C_i = E_{K_i}(P)$ .
- \* Data:  $2^k$  ciphertexts, Memory:  $2^k$  *n*-bit, Time: negligible.

#### • A codebook attack:

- \* Build a table of the ciphertexts for all the plaintexts encrypted using one unknown key:  $C_i = E_K(P_i)$ .
- \* Data: 2<sup>n</sup> plaintext-ciphertext pairs, Memory: 2<sup>n</sup> n-bit, Time: negligible.

#### • An exhaustive key search (or brute force search) attack:

- \* Try every possible key, given a known plaintext-ciphertext pair. The correct key will yield the correct correspondence:  $E_{\kappa_i}(P) \stackrel{?}{\to} C$ .
- \* Data: negligible, Memory: negligible, Time: 2<sup>k</sup> encryptions.

イロト イポト イヨト イヨト

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

### 1.5 Advanced Cryptanalysis Techniques

An attack is commonly regarded as effective if it is faster than an exhaustive key search.

A trade-off between data, time and/or memory.

- Meet-in-the-middle attack
  - \* Reflection-meet-in-the-middle attack, Higher-order meet-in-the-middle attack
- Differential cryptanalysis
  - \* Truncated differential, Higher-order differential, Impossible differential
  - \* Boomerang, Amplified boomerang, Rectangle attacks, Impossible boomerang
- Linear cryptanalysis
- Differential-linear cryptanalysis
- Integral cryptanalysis
  - \* Square attack, Saturation attack
- Slide attack, Reflection attack
- Related-key attack
- Algebraic cryptanalysis

イロト イポト イヨト イヨト

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

## 1.5.1 Differential Cryptanalysis

- Introduced in 1990 by Biham and Shamir.
- Work in a chosen-plaintext/ciphertext attack scenario.
- Take advantage of how a specific difference in a pair of plaintexts can affect a difference in the pair of ciphertexts (under the same key).
- A differential is the combination of the input difference and the output difference.
- The probability of the differential  $(\alpha, \beta)$  for an *n*-bit block cipher  $\mathbb{E}$ , written  $\Delta \alpha \rightarrow \Delta \beta$ , is

$$\mathsf{Pr}_{\mathbb{E}}(\Delta \alpha \to \Delta \beta) = \Pr_{P \in \{0,1\}^n}(\mathbb{E}(P) \oplus \mathbb{E}(P \oplus \alpha) = \beta).$$

• For a random function, the expected probability of any differential is  $2^{-n}$ .

If  $\Pr_{\mathbb{E}}(\Delta \alpha \to \Delta \beta) > 2^{-n}$ , we can use the differential to distinguish  $\mathbb{E}$  from a random function.

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

## 1.5.2 Related-Key (Differential) Cryptanalysis

- Independently introduced by Knudsen in 1992 and Biham in 1993.
- Different from differential cryptanalysis: The pair of ciphertexts are obtained by encrypting the pair of plaintexts using two different keys with a particular relationship, e.g. certain difference.
- Probability of a related-key differential:

$$\mathsf{Pr}_{\mathbb{E}_{\mathcal{K}},\mathbb{E}_{\mathcal{K}'}}(\Delta\alpha\to\Delta\beta)=\Pr_{P\in\{0,1\}^n}(\mathbb{E}_{\mathcal{K}}(P)\oplus\mathbb{E}_{\mathcal{K}'}(P\oplus\alpha)=\beta).$$

• For a random function, the expected probability of any related-key differential is  $2^{-n}$ .

If  $\Pr_{\mathbb{E}_{K},\mathbb{E}_{K'}}(\Delta \alpha \to \Delta \beta) > 2^{-n}$ , we can use the related-key differential to distinguish  $\mathbb{E}$  from a random function.

イロト イボト イヨト イヨト

1. Block Cipher Cryptanalysis The MISTY1 Block Cipher
 2. The MISTY1 Block Cipher
 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Amplified Boomerang Attack
 4. 2<sup>92</sup> Weak Keys for a Related-Key Amplified Boomerang Attack 5. Conclusions

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

### 1.5.3 Amplified Boomerang Attack

- Introduced in 2000 by Kelsey, Kohno and Schneier (as a variant of the boomerang attack).
- Work in a chosen-plaintext/ciphertext attack scenario.
- Based on an amplified boomerang distinguisher:
  - \* Treat a block cipher  $\mathbb{E}$  as a cascade of two sub-ciphers  $\mathbb{E} = \mathbb{E}^0 \circ \mathbb{E}^1$ .
  - \* Defined to be a pair of differentials  $(\Delta \alpha \rightarrow \Delta \beta, \Delta \gamma \rightarrow \Delta \delta)$ :
    - $\Delta \alpha \rightarrow \Delta \beta$  for  $\mathbb{E}^0$  with probability *p*;  $\Delta \gamma \rightarrow \Delta \delta$  for  $\mathbb{E}^1$  with probability *q*.
  - \* Concerned event:  $\mathbb{E}(P) \oplus \mathbb{E}(P') = \delta$  and  $\mathbb{E}(P \oplus \alpha) \oplus \mathbb{E}(P' \oplus \alpha) = \delta$
  - \* Probability:  $p^2q^22^{-n}$  approximately (under assumptions).
- For a random function, the expected probability of any amplified boomerang distinguisher is  $2^{-2n}$ .

If  $p^2q^2 > 2^{-n}$ , we can use the distinguisher to distinguish between  $\mathbb{E}$  and a random function.

イロト イポト イヨト イヨト

#### 1. Block Cipher Cryptanalysis

2. The MISTY1 Block Cipher 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack <sup>2</sup> Weak Keys for a Related-Key Amplified Boomerang Attack 5. Conclusions

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

#### An Amplified Boomerang Distinguisher



- 4 E b

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

## 1.5.4 Related-Key Amplified Boomerang Attack

- A combination of the amplified boomerang attack and related-key cryptanalysis.
- Based on a related-key amplified boomerang distinguisher.
  - \* Treat a block cipher  $\mathbb{E}$  as  $\mathbb{E} = \mathbb{E}^0 \circ \mathbb{E}^1$ .
  - \* Work typically in a related-key attack scenario with four related keys  $K_A, K_B, K_C, K_D$ :
    - $K_A \oplus K_B = K_C \oplus K_D;$
    - $K_A \oplus K_C = K_B \oplus K_D.$
  - \* Consist of four related-key differentials.
  - \* Concerned event:  $\mathbb{E}_{\mathcal{K}_{\mathcal{A}}}(P) \oplus \mathbb{E}_{\mathcal{K}_{\mathcal{C}}}(P') = \delta$  and  $\mathbb{E}_{\mathcal{K}_{\mathcal{B}}}(P \oplus \alpha) \oplus \mathbb{E}_{\mathcal{K}_{\mathcal{D}}}(P' \oplus \alpha) = \delta$ .
  - \* Probability:  $p^2q^22^{-n}$  approximately (under assumptions).
- For a random function, the expected probability of any related-key amplified boomerang distinguisher is  $2^{-2n}$ .

If  $p^2q^2 > 2^{-n}$ , we can use the distinguisher to distinguish between  $\mathbb E$  and a random function.

化口水 化固水 化医水 化医水

#### 1. Block Cipher Cryptanalysis

2. The MISTY1 Block Cipher 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack <sup>2</sup> Weak Keys for a Related-Key Amplified Boomerang Attack 5. Conclusions

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Four Cryptanalytic Scenarios
- 1.4 Three Elementary Cryptanalysis Techniques
- 1.5 Advanced Cryptanalysis Techniques

### A Related-Key Amplified Boomerang Distinguisher



- E - E

### 2.1 Introduction

- Designed by Mitsubishi (Matsui et al.), published in 1995.
- A 64-bit block cipher, a user key of 128 bits, and a recommended number of 8 rounds, with a total of 10 key-dependent logical functions **FL**:

2.1 Introduction

2.4 Security

- \* two FL functions at the beginning;
- \* two FL functions inserted after every two rounds.
- A Japanese CRYPTREC-recommended e-government cipher, an European NESSIE selected cipher, an ISO international standard.
- Widely used in Mitsubishi products as well as in Japanese military.

1. Block Cipher Cryptanalysis

 Dick Cipher Bryptinistre 2. The MISTYI Block Cipher 3. 2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack 4. 2<sup>92</sup> Weak Keys for a Related-Key Amplified Boomerang Attack
 5. Conclusions

2.1 Introduction 2.2 Structure 2.3 Key Schedule 2.4 Security

#### 2.2 Structure



Jigiang Lu

э

#### 2.3 Key Schedule

1. Represent a user key K as eight 16-bit words  $K = (K_1, K_2, \dots, K_8)$ .

2.2 Structure 2.3 Key Schedule 2.4 Security

2. Generate a different set of eight 16-bit words  $K_1', K_2', \cdots, K_8'$  by

$$K'_i = \mathbf{FI}(K_i, K_{i+1}), \text{ for } i = 1, 2, \cdots, 8.$$

3. Subkeys:

$$\begin{split} & KO_{i1} = K_i, KO_{i2} = K_{i+2}, KO_{i3} = K_{i+7}, KO_{i4} = K_{i+4}; \\ & KI_{i1} = K'_{i+5}, KI_{i2} = K'_{i+1}, KI_{i3} = K'_{i+3}; \\ & KL_i = K_{\frac{i+1}{2}} ||K'_{\frac{i+1}{2}+6}, \text{ for } i = 1, 3, 5, 7, 9; \text{otherwise}, KL_i = K'_{\frac{i}{2}+2} ||K_{\frac{i}{2}+4}. \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

| <ol> <li>Block Cipher Cryptanalysis</li> <li>The MISTYI Block Cipher</li> <li>2<sup>103.57</sup> Weak Keys for a Related-Key Differential Attack</li> <li>2<sup>92</sup> Weak Keys for a Related-Key Amplified Boomerang Attack</li> <li>5. Conclusions</li> </ol> | 2.1 Introduction<br>2.2 Structure<br>2.3 Key Schedule<br>2.4 Security |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 2.4 Security                                                                                                                                                                                                                                                       |                                                                       |

- Has been extensively analysed against a variety of cryptanalytic methods.
- No whatever cryptanalytic attack on the full version.

< 3 >

#### 3.1 Related Work

#### 3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

Dai and Chen's related-key differential attack on 8-round MISTY1 with only the last 8 FL functions (INSCRYPT 2011).

- A class of 2<sup>105</sup> weak kevs.
  - \* A weak key is a user key under which a cipher is more vulnerable to be attacked.
- A 7-round related-key differential characteristic with probability  $2^{-60}$ .
- Attacking the 8-round reduced version under weak keys.
  - \* Attack procedure is straightforward, by conducting a key recovery on FO<sub>1</sub> in a way similar to the early abort technique for impossible differential cryptanalysis.
  - \* Data complexity: 263 chosen ciphertexts.
  - \* Memory complexity: 2<sup>35</sup> bytes.
  - \* Time complexity: 2<sup>86.6</sup> encryptions.

イロト イポト イヨト イヨト

#### 3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

## 3.1.1 A Class of 2<sup>105</sup> Weak Keys

Three binary constants:

- \* 7-bit a = 0010000:
- \* 16-bit b = 001000000010000:

Let  $K_A$ ,  $K_B$  be two 128-bit user keys:

$$K_A = (K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8),$$
  

$$K_B = (K_1, K_2, K_3, K_4, K_5, K_6^*, K_7, K_8).$$

Let  $K'_{A}, K'_{B}$  be the corresponding 128-bit words generated by the key schedule:

$$\begin{split} & \mathcal{K}'_A = (\mathcal{K}'_1, \mathcal{K}'_2, \mathcal{K}'_3, \mathcal{K}'_4, \mathcal{K}'_5, \mathcal{K}'_6, \mathcal{K}'_7, \mathcal{K}'_8), \\ & \mathcal{K}'_B = (\mathcal{K}'_1, \mathcal{K}'_2, \mathcal{K}'_3, \mathcal{K}'_4, \mathcal{K}'^5, \mathcal{K}'^6, \mathcal{K}'_7, \mathcal{K}'_8). \end{split}$$

The class of weak keys is defined to be the set of all possible  $(K_A, K_B)$  satisfying the following 10 conditions:

$$\begin{array}{ll} {{\cal K}_6 \oplus {\cal K}_6^* = c,} & {{\cal K}_5' \oplus {\cal K}_5^{**} = b,} & {{\cal K}_6' \oplus {\cal K}_6'^* = c,} & {{\cal K}_{6,12} = 0,} & {{\cal K}_{7,3} = 1,} \\ {{\cal K}_{7,12} = 0,} & {{\cal K}_{8,3} = 1,} & {{\cal K}_{4,3}' = 1,} & {{\cal K}_{4,12}' = 1,} & {{\cal K}_{7,3}' = 0.} \end{array}$$

The number:

$$|{\it K}_1|=2^{16}, |{\it K}_2|=2^{16}, |{\it K}_3|=2^{16}, |({\it K}_4,{\it K}_5)|=2^{30}, |({\it K}_6,{\it K}_7,{\it K}_8)|=2^{27}.$$

Therefore, a total of 2<sup>105</sup> weak keys.

・ロト ・ 同ト ・ ヨト ・ ヨト

- 3.1 Related Work
- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

### 3.1.2 A 7-Round Related-Key Differential Characteristic



Jigiang Lu Weak Keys of the Full MISTY1 Block Cipher for Related-Key Cryptanalysis

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

## 3.2 A Corrected Class of Weak Keys

Focus on the 7-round related-key differential characteristic.



Not all the 2<sup>15</sup> possible  $K'_7$  (i.e.  $KI_{21}$ ) defined by the weak key class make  $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0!$ The number of  $K'_7$  defined by the weak key class is  $2^{15}$ , the number of  $K'_7$  satisfying  $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0$  is about  $2^{14.57}$ . The number of  $K'_7$  defined by the weak key class & satisfying  $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0$  is about  $2^{13.57}$ .  $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) = 2^{-15}/2^{-14}/2^{-13.42}.$ 

(4月) (4日) (4日)

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys
- 3.4 Another Class of 2<sup>102.57</sup> Weak Keys



Not all the 2<sup>16</sup> possible  $K'_2$  (i.e.  $KI_{73}$ ) defined by the weak key class make  $\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) > 0$ ! The number of  $K'_2$  defined by the weak key class is 2<sup>16</sup>, the number of  $K'_2$  satisfying  $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0$  is 2<sup>15</sup>. The number of  $K'_2$  defined by the weak key class & satisfying  $\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) > 0$  is 2<sup>15</sup>.  $\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) = 2^{-15}$ .

1 N

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

As a result,

• A class of 
$$2^{102.57}$$
 weak keys:  
 $|K_1| = 2^{16}, |(K_2, K_3)| = 2^{31}, |(K_4, K_5)| = 2^{30}, |(K_6, K_7, K_8)| \approx 2^{25.57}$   
\*  $|K_3| = 2^{16}, |K_5| = 2^{16}$   
\*  $|K_7'| = 2^{13.57}; \forall K_7', \exists 2^{12} (K_6', K_8)$ .  
\*  $|K_{2,8-16}'| = 2^8, |K_3'| = 2^{16}, |K_{4,8-16}'| = 2^8$ .

• A 7-round related-key differential with probability  $2^{-58}$ .

\* 
$$(b||0^{32}||c) \rightarrow (0^{32}||c||0^{16})$$

イロト イポト イラト イラト

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys
- 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

### 3.3.1 Precomputation

#### Hash table $\mathcal{T}_1$ :



Memory complexity:  $2^{75.91}$  bytes; Time complexity:  $2^{73.59}$  **FI** computations. For every  $(x, \eta, X)$ , there are  $2^{23}$  satisfying  $(K_1, K_3, K'_{2,8-16})$  on average.

Hash table  $\mathcal{T}_2$ :

Y: output difference of  $\mathbf{FI}_{13}$ 

Store satisfying  $(K_6, K_7, K_8)$  into Table  $\mathcal{T}_2$  indexed by  $(x, \eta, Y, K_1, K'_{4,8-16})$ 

3.1 Related Work

3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.

3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys



Memory complexity: 2<sup>84.74</sup> bytes; Time complexity: 2<sup>84.16</sup> FI computations. For every  $(x, \eta, Y, K_1, K'_{4,8-16})$ , there are  $2^{9.57}$  satisfying  $(K_6, K_7, K_8)$  on average.

- A 🖻 🕨

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys
- 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

## 3.3.2 Attack Outline



3.3.3 Attack Complexity

3.1 Related Work

- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- **3.3 Attacking the Full MISTY1 under Weak Keys** 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

# • Data complexity: 2<sup>61</sup> chosen ciphertexts.

- Memory complexity: 2<sup>99.2</sup> bytes.
- Time complexity: 2<sup>87.94</sup> encryptions.
- Success probability: 76%.

イロト イポト イラト イラト

- 3.1 Related Work
- 3.2 A Corrected Class of Weak Keys and Improved 7-Round Related-Key Diff.
- 3.3 Attacking the Full MISTY1 under Weak Keys 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

# 3.4 Another Class of 2<sup>102.57</sup> Weak Keys

#### Focus on the 7-round related-key differential characteristic:



Jigiang Lu

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Cryptanalysis

#### 4.1 Related Work

#### 4.1 Related Work

- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

Chen and Dai's related-key amplified boomerang attack on 8-round MISTY1 with only the first 8 FL functions (CHINACRYPT 2011).

- A class of 2<sup>90</sup> weak keys.
- A 7-round related-key amplified boomerang distinguisher with probability  $2^{-118}$ .
- Attacking the 8-round reduced version under weak keys.
  - \* Attack procedure is straightforward, by conducting a key recovery on FO<sub>8</sub> in a way similar to the early abort technique.
  - \* Data complexity: 263 chosen plaintexts.
  - \* Memory complexity: 2<sup>65</sup> bytes.
  - \* Time complexity: 2<sup>70</sup> encryptions.

イロト イボト イラト イラト

#### 4.1 Related Work

- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

### 4.1.1 A Class of 2<sup>90</sup> Weak Keys

Let  $K_A$ ,  $K_B$ ,  $K_C$ ,  $K_D$  be four 128-bit user keys:  $K_A = (K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8), \quad K_B = (K_1, K_2^*, K_3, K_4, K_5, K_6, K_7, K_8),$  $K_{C} = (K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{5}^{*}, K_{7}, K_{8}), K_{D} = (K_{1}, K_{7}^{*}, K_{3}, K_{4}, K_{5}, K_{5}^{*}, K_{7}, K_{8}).$ Let  $K'_A, K'_B, K'_C, K'_D$  be the corresponding 128-bit words generated by the key schedule:

$$\begin{array}{ll} K_A' = (K_1', K_2', K_3', K_4', K_5', K_6', K_7', K_8'), & K_B' = (K_1'^*, K_2'^*, K_3', K_4', K_5', K_6', K_7', K_8'), \\ K_C' = (K_1', K_2', K_3', K_4', K_5'^*, K_6'^*, K_7', K_8'), & K_D' = (K_1^{+*}, K_2^{+*}, K_3', K_4', K_5^{+*}, K_6^{+*}, K_7', K_8'). \end{array}$$

The class of weak keys is defined to be the set of all possible  $(K_A, K_B, K_C, K_D)$  satisfying the following 12 conditions:

$$\begin{array}{ll} K_2\oplus K_2^*=c, & K_6\oplus K_6^*=c, & K_1'\oplus K_1'^*=b, & K_5'\oplus K_5'^*=b\\ K_2'\oplus K_2'^*=c, & K_6'\oplus K_6'^*=c, & K_{5,3}=1, & K_{5,12}=0, \\ K_{4,3}'=0, & K_{7,3}=1, & K_{7,12}=0, & K_{8,3}=0. \end{array}$$

The number:

$$|{\cal K}_1|=2^{16}, |({\cal K}_2,{\cal K}_3)|=2^{16}, |({\cal K}_4,{\cal K}_5)|=2^{29}, |({\cal K}_6,{\cal K}_7)|=2^{14}, |{\cal K}_8|=2^{15}.$$

Therefore, a total of 290 weak keys.

イロト イポト イヨト イヨト

#### 4.1 Related Work

- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

## 4.1.2 A 7-Round Related-Key Amp. Boo. Distinguisher

A 7-round related-key amplified boomerang distinguisher with probability  $p^2 q^2 2^{-n} = 1^2 \times (2^{-27})^2 \times 2^{-64} = 2^{-118}$  under weak keys.

- $\mathbb{E}_0$ : Rounds 1 –2, including FL<sub>4</sub> but excluding FL<sub>3</sub>.
- \* E<sub>1</sub>: Rounds 3 −7, including FL<sub>3</sub> (but excluding FL<sub>4</sub>).
- Related-key differential  $\Delta \alpha \rightarrow \Delta \beta$  for  $\mathbb{E}_0$ :  $(0^{48}||b) \rightarrow (0^{32}||c||0^{16})$  with probability 1.
- Related-key differential  $\Delta \gamma \rightarrow \Delta \delta$  for  $\mathbb{E}_1$ :  $(0^{48}||b) \rightarrow 0$  with probability  $2^{-27}$ . \*

イロト イポト イヨト イヨト

#### 4.1 Related Work

- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

## The Two Related-Key Differentials Used



Jigiang Lu

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Cryptanalysis

4.1 Related Work

4.2 An Improved 7-Round Distinguisher

- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

## 4.2 An Improved 7-Round Distinguisher

Focus on the second related-key differential:



Surprisingly, all the possible  $(K'_2, K'^*_2)$  (i.e.  $KI_{73}$ ) defined by the weak key class make  $\Pr_{\mathbf{FI}_{72}}(\Delta c \to \Delta c) > 0!$  $\Pr_{\mathbf{FI}_{72}}(\Delta c \to \Delta c) = 2^{-15}.$ 

Thus, a 7-round related-key amplified boomerang distinguisher with probability  $2^{-116}$ . ・ロト ・周ト ・ヨト ・ヨト

4.1 Related Work 4.2 An Improved 7-Round Distinguisher 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

## 4.3.1 Precomputation

Hash table  $\mathcal{T}_1$ :

 $x \in \{0, 1\}^{32}$ : Input of  $\mathbf{FO}_8$  without  $K_8$ .

X: The right 9 bits of the output difference of  $\mathbf{FL}_{81}$ 

Y: Output difference of  $\mathbf{FL}_{83}$ 

Store satisfying x into Table  $\mathcal{T}_1$  indexed by  $(K'_3, K'_5, K_7, X, Y)$ .



Memory complexity:  $2^{79}$  bytes; Time complexity:  $2^{71}$  FI computations. For every  $(K'_3, K'_5, K_7, X, Y)$ , there are  $2^8$  satisfying x on average.

4.1 Related Work 4.2 An Improved 7-Round Distinguisher 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

#### Hash table $\mathcal{T}_2$ :

 $x \in \{0, 1\}^{32}$ : Input of  $\mathbf{FL}_{10}^{-1}$ .  $\lambda$ : Output of  $\mathbf{FL}_{10}^{-1}$  after being xored with  $(K_8||0^{16})$ .

Store  $(K_1, K_8)$  into Table  $\mathcal{T}_2$  indexed first by  $K_7$  and then by  $(x, \lambda)$ .



- 4.1 Related Work
- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

## 4.3.2 Attack Outline



- Step 1: Choose two sets of  $2^{58.5}$  plaintext pairs with difference  $(0^{48}||b)$ .
- Step 2: Keep the quartets such that each ciphertext pair has difference (2||0).
- Step 3: Focus on  $\mathbf{FL}_9$ . Guess  $K'_3$ , keep the quartets such that each pair has 7-bit difference a.
- Step 4: Focus on **FL**<sub>9</sub>. Guess  $K_5$ , compute (X, Y) and  $(X^*, Y^*)$ .
- Step 5: Guess  $K_7$ , get the two possible values for  $K_6$ , and compute  $K'_5$ .
- Step 6: Focus on  $\mathbf{FI}_{81}$  and  $\mathbf{FI}_{83}$ . Obtain possible inputs to  $\mathbf{FO}_8$  excluding XOR with  $K_8$  from Table  $\mathcal{T}_1$ .
- Step 7: Focus on **FL**<sub>10</sub>. Obtain  $(K_1, K_8)$  from Table  $\mathcal{T}_2$ .
- Step 8: For a subkey guess whose counter is non-zero, exhaustively search the remaining key bits.

4.1 Related Work

4.2 An Improved 7-Round Distinguisher

4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

#### 4.3.3 Attack Complexity

- Data complexity: 2<sup>60.5</sup> chosen plaintexts.
- Memory complexity: 2<sup>80.07</sup> bytes.
  - \* On-line: 278.23;
  - \* Off-line: 2<sup>79.58</sup>
- Time complexity: 2<sup>80.18</sup> encryptions.
- Success probability: 86%.

イロト イポト イヨト イヨト

- 4.1 Related Work
- 4.2 An Improved 7-Round Distinguisher
- 4.3 Attacking the Full MISTY1 under Weak Keys 4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

4.4 Three Other Classes of 2<sup>90</sup> Weak Keys

#### Focus on the first related-key differential:

Consider the three other possible combinations of  $(K_{5,3}, K_{5,12})$ , further classified by  $(K'_{3,3}, K'_{3,12})$ 



Thus, a total of 292 weak keys.

### 5. Conclusions

Have presented related-key differential and amplified boomerang attacks on the full MISTY1 algorithm under certain weak key assumptions.

- \* Have described 2<sup>103.57</sup> weak keys for a related-key differential attack on the full MISTY1.
- Have described 2<sup>92</sup> weak keys for a related-key amplified boomerang attack on the full MISTY1.
- \* Quite theoretical, for the attacks work under the assumptions of weak-key and related-key scenarios and their complexities are very high.

The MISTY1 cipher does not behave like a random function (in the related-key model), and cannot be regarded to be an ideal cipher.

イロト イボト イラト イラト

#### Summary of Main Cryptanalytic Results

| #Rounds               | FL  | #Keys               | Attack Type                     | Data                 | Time                    | Year |
|-----------------------|-----|---------------------|---------------------------------|----------------------|-------------------------|------|
| 6 (1 - 6)             | yes | 2 <sup>128</sup>    | Impossible differential         | 2 <sup>51</sup> CP   | 2 <sup>123.4</sup> Enc. | 2008 |
| 6 (1 - 6)             | yes | 2 <sup>128</sup>    | Higher-order differential       | $2^{53.7}CP$         | 2 <sup>64.4</sup> Enc.  | 2008 |
| 6 (3 - 8)             | yes | 2 <sup>128</sup>    | Integral                        | 2 <sup>32</sup> CC   | $2^{126.1} Enc.$        | 2009 |
| 7(1-7)                | yes | 2 <sup>128</sup>    | Higher-order differential       | $2^{54.1}CP$         | $2^{120.7}$ Enc.        | 2008 |
| $7^{\dagger}$ (2 - 8) | yes | 2 <sup>73</sup>     | Related-key amplified boomerang | 2 <sup>54</sup> CP   | 2 <sup>55.3</sup> Enc.  | 2008 |
| $8^{\dagger} (1-8)$   | yes | 2 <sup>90</sup>     | Related-key amplified boomerang | 2 <sup>63</sup> CP   | 2 <sup>70</sup> Enc.    | 2011 |
| $8^{\dagger} (1-8)$   | yes | 2 <sup>105‡</sup>   | Related-key differential        | 2 <sup>63</sup> CC   | 2 <sup>86.6</sup> Enc.  | 2011 |
| full                  | yes | 2 <sup>103.57</sup> | Related-key differential        | 2 <sup>61</sup> CC   | 2 <sup>87.94</sup> Enc. | 2012 |
|                       |     | 2 <sup>92</sup>     | Related-key amplified boomerang | 2 <sup>60.5</sup> CP | 2 <sup>80.18</sup> Enc. | 2012 |

CP: Chosen Plaintexts, CC: Chosen Ciphertexts, Enc.: Encryptions,

†: Exclude the first/last layer of two FL functions, ‡: There is a flaw.

イロト イポト イラト イラト

# Thank you!

Questions or Comments?

イロト イポト イヨト イヨト

э